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Nonperiodic delay mechanism and fractallike behavior in classical time-dependent scattering
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We study the occurrence of delay mechanisms other than periodic orbits in scattering systems with time-
dependent potentials. By using as model system two harmonically oscillating disks on a plane, we have found
the existence of a mechanism not related to the periodic orbits of the system, that delays trajectories in the
scattering region. This mechanism creates a fractallike structure in the scattering functions and can possibly
occur in several time-dependent scattering systems.
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I. INTRODUCTION

Scattering processes are of fundamental importance
physical, chemical, and biological systems, because they
give insight into the characteristics of the scatterer. The m
jority of works in classical scattering has been focused
time-independent scattering. In this case the dynamic
classified into regular and chaotic according to the singu
ity structure of the corresponding scattering functions@1–4#.
Regular scattering is associated with smooth scattering fu
tions with a finite number of singularities. On the contra
chaotic scattering functions are characterized by a fracta
of singularities. A typical representative of regular scatter
is a system consisting of two static disks on a plane@5#,
whereas the addition of a third disk in a triangular config
ration leads to chaotic scattering@6#.

Time-dependent classical scattering has received les
tention. Rich dynamical behavior is expected in some of
cases as it has been recently observed in Refs.@7–15# but
there is still a lack of a deeper understanding of the proce
involved. In the present work we also address the problem
classical scattering off a time-dependent scatterer, focu
on the question how the time dependence influences the
namics in the scattering region. In order to isolate the effe
of time dependence, we consider the time-dependent c
terpart of the above-mentionedintegrablesystem consisting
of two static disks on a plane. The main advantage of
system is that choosing an appropriate set of initial con
tions we can eliminate the effects of the bounded orbits
the system on the scattering dynamics. Thus we can illu
nate delay mechanisms other than the traditional ones b
on the presence of chaotic invariant sets of unstable peri
orbits. The time dependence in our system is introduced
assuming that the two disks oscillate harmonically with tim
A similar system has also been studied by Antillo´n et al. @14#
using, however, a nonharmonic oscillation law. It is fou
that the time dependence gives rise to a complicated fra
like behavior in the scattering functions resembling the r
structure observed in static chaotic scattering: as oppose
the regular case, discontinuities are found to occur at m
different scales. However, the structure of these disconti
ties is not self-similar at arbitrarily small scales. This unev
behavior is related to a nonperiodic delay mechanism, ba
on a large energy loss of the scattered particle and not to
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presence of phase-space structures which trap the partic
the scattering region. Nonperiodic delay processes have
been reported in the literature@13#. Nevertheless, in that cas
a bounded chaotic set containing infinitely many aperio
trajectories is responsible for the delay. Our study co
serve as a first step towards the deeper understanding of
tain scattering processes off oscillating targets, such as m
ecules, atomic clusters, surfaces, and nuclei in the clu
model.

The outline of the paper is as follows: In Sec. II we i
troduce our model. In Sec. III we present the results of
numerical investigations. In Sec. IV we attempt to give
interpretation of the above results by identifying the mec
nism that leads to the delay of the trajectories in the scat
ing region. In Sec. V we summarize our main results a
comment on the possible extensions of this work.

II. DESCRIPTION OF THE MODEL

We consider the scattering of a free point particle off tw
circular harmonically oscillating disks on a plane, as sho
in Fig. 1. The disks are considered to be much heavier t
the scattered particle. The recoil of the disks at the collis

FIG. 1. The two oscillating disks on thex-y plane. The positions
of disks at timetn21 are drawn with the dotted line and attn with
the solid line. The point A, which is defined with the vectorrn21, is
the point of the (n21)th bounce. The point B, which is define
with rn , is the point of thenth bounce. The dashed line with th
arrows represents a segment of a trajectory that bounces bet
the two disks.
©2001 The American Physical Society05-1
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is not taken into account and therefore the total energy of
system is not conserved. The centers of the disks are o
lating harmonically along the same axis. The position of
center of thei th disk is given by the equation

di~ t !5di
(0)1A i sin~v i t1f i !, ~1!

wheredi
(0) denotes the equilibrium position of the center,A i

is a vector directed along the axis of oscillation having m
nitude equal to the amplitude of the oscillation,v i is the
angular frequency of the oscillation, andf i is the initial
phase. The positionr (t) and the velocityu(t) of the particle
in the time interval between the (n21)th and thenth bounce
are given by

r ~ t !5rn211~ t2tn21!un21 ,

u~ t !5un21 , ~2!

where rn21 denotes the position of the (n21)th bounce,
un21 denotes the velocity of the scattered particle after
(n21)th bounce, andtn21 denotes the time when tha
bounce occurred. In order to find the timetn when the next
bounce will occur, we must solve the equation

idi~ t !2r ~ t !i25Ri
2 , ~3!

whereRi denotes the radius of thei th disk. This equation
must be solved twice~for i 51,2) and the smallest non
negative solution has to be kept. The condition~3! leads to
the equation

c1~ t2tn21!21c2 sin2~v i t1f i !1c3~ t2tn21!sin~v i t1f i !

1c4~ t2tn21!1c5 sin~v i t1f i !1c650, ~4!

where the coefficientsc1 , . . . ,c6 are given by

c15un21
2 ,

c25A i
2 ,

c3522un21•A i ,

c452~rn212di
(0)!•un21 , ~5!

c552~rn212di
(0)!•A i ,

c65~rn212di
(0)!22Ri

2 .

Equation~4! is solved numerically to obtaintn . Using Eq.
~2!, the position of the next bounce is then given by

rn5rn211~ tn2tn21!un21 . ~6!

Since the mass of the disks is considered to be much la
than that of the scattered particle, the velocity of the part
after thenth bounce is given by

un5un2122@n•~un212V i !#•n, ~7!
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wheren is the normal to the disk at the point of the impa
and V i is the velocity of the involved disk at the instant o
the collision, which is given by

V i5A iv i cos~v i tn1f i !. ~8!

In our study we have chosen thex axis as the axis of oscil-
lation @A i5(Ai ,0)#. We have also chosen the radii, the a
gular frequencies, and the amplitudes of the disks to be
same (R15R25R, v15v25v, A15A25A). Equations
~6! and ~7! are invariant under the scaling transformation

v→lv, un→lun , tn→
tn

l
, ~9!

and therefore the system can be described in terms of
dimensionless variables

ũn5
un

Av
, t̃ n5vtn , r̃n5

rn

A
. ~10!

By following the above procedure, we iterate numerically t
map (r̃n ,ũn , t̃ n)→( r̃n11 ,ũn11 , t̃ n11) and obtain the trajecto
ries for a large number of initial conditions.

III. NUMERICAL RESULTS

A. Fractallike scattering functions

The scattering region is defined as a circular domain
radiusR0.Ri centered at the origin. As initial conditions w
chooser̃ (0)50 and ũ(0)5(ũ0 cosa, ũ0 sina). For the ma-
jority of our numerical calculations we have chosen the
mensionless parameters of the system to beR̃5R/A510,
d̃1

(0)5d1
(0)/A5(215,0), d̃2

(0)5d2
(0)/A5(15,0), f15p, f2

50, a51022 rad, andR̃05100. For these values of the pa
rameters the scattered particle exhibits a small numbe
bounces~typically 4–7!, in contrast to Ref.@14# where the
number of bounces is much larger~typically more than 100!
due to the different choice of the parameters. We have
tained the delay timeT̃ that the particle spends in the sca
tering region, the scattering anglefout , and the outgoing
velocity ũout as a function ofũ0. The results are shown in
Fig. 2. A rich fractallike structure is observed in these sc
tering functions for rather small values ofũ0. As ũ0 in-
creases, the scattering functions become more regular. In
der to study the dependence of the structure of this func
on the anglea, we have calculatedT̃(ũ0) for a51023 rad
and a51021 rad. The results are shown in Fig. 3. We o
serve that as the angle increases the function becomes
regular in the sense that the range ofũ0 in which T̃(ũ0)
exhibits wild oscillations becomes smaller. This was e
pected since for smallera the particle exhibits more bounce
and therefore senses more strongly the dynamics in the s
tering region. We observe that the peak structure ofT̃(ũ0)
behaves as a fractal set for many different scales. The lo
limit where the breaking of the fractality occurs becom
smaller and smaller as we approach the regionũ0→0. In
5-2
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order to investigate the apparent fractal structure of the
tem, we make successive magnifications of theT̃(ũ0) plot of
Fig. 2~a! in a region ofũ0 around the value 0.8. The resul
are shown in Fig. 4. We observe that the fractallike struct
breaks at a very small scale. In thisũ0 region, this breaking
scale is found to be around 1027. In the following, a more in
depth analysis of these findings will be given.

FIG. 2. ~a! The delay timeT̃, ~b! the scattering anglefout ~in

radians!, and ~c! the outgoing velocityũout as a function of the

initial velocity ũ0 for initial anglea51022 rad. All the plots were
created by iterating 104 initial conditions.
01620
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B. Investigation of the fractallike structure

In order to quantify the observations concerning the
parent fractality of the system made in the previous subs
tion, we have calculated an effective uncertainty dimens

of T̃(ũ0) @16,17#. The uncertainty dimension is given bydu

512b, where b appears asf (e)'eb at the e→0 limit.
f (e) is the fraction of uncertain points, for a given value

uncertainty,e, and for randomly chosen pointsũ0. Eachũ0 is
considered to be uncertain if we find that the differen
uT(ũ0)2T(ũ01e)u is larger than a number of order 1.e
cannot tend to zero since we have found that our system
not self-similar at arbitrarily small scales. We therefore u
the term effective dimension to indicate the slope of logf(e)
vs loge in a finite range ofe. In our calculation we have
included as many random points as necessary to obtain
uncertain points per run. We have calculated the effec
uncertainty dimension for several values ofa and in all cases
log f(e) as a function of loge can be well fitted by a straigh
line, indicating that the system resembles the behavior o
fractal at many different scales. A plot of logf(e) as a func-
tion of loge for a51022 rad is shown in Fig. 5. The corre
sponding effective dimension is found to be equal to 0.
The effective dimensions are not sensitive to variations

FIG. 3. The delay timeT̃ as a function of the initial velocityũ0

for the values of the initial anglea ~a! a51023 rad, ~b!a
51021 rad.
5-3
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the initial anglea: a variation ofdu of less than 10% is
observed for a variation ofa between the values 1023 rad
and 1021 rad. For each anglea, there is a scale below whic
it is not possible to find any uncertain points. This suppo
our observation that self-similarity does not persist at a
trarily small scales.

FIG. 4. Magnifications of Fig. 2~a! around the value 0.8 of the

initial velocity ũ0. Although in~a! a self-similar structure appears t
exist, it is found that this structure does not persist at arbitra
small scales as shown in~b! and ~c!.
01620
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C. Decay law

We have also investigated the behavior of the funct
N(t)/N0 which gives the fraction of particles that remain
the scattering region after timet. It is known that for hyper-
bolic systemsN(t)/N0 decays exponentially whereas for sy
tems with marginal orbits and KAM tori it usually obeys
power law@18#. In order to study numerically the behavior o
N(t)/N0 we need to perform a Monte Carlo simulation b
iterating a large numberN0 of randomly selected initial con
ditions. In our system, in contrast to the static two-disk s
tem, an averaging over the initial velocity of the particle h
also to be performed since the system is not conservative

our calculation for the oscillating system,ũ0 is uniformly

distributed in (0,2# since this is the range ofũ0 where all the

peaks of T̃(ũ0) occur. The anglea has been chosen in
(0,0.7# since for values ofa in this range the particle exhib
its at least one collision before exiting the scattering regi
An averaging over the initial phases has also been p
formed. We have used 107 orbits. For some orbits the majo
loss of energy occurs at the last collision. These orbits esc
from the scattering region with a very low velocity an

therefore they correspond to pronounced peaks in theT̃(ũ0)
plot. In order for these peaks not to be much higher th
those corresponding to a delay of the particle betwe

bounces, we chooseR̃0525. The result is shown in Fig. 6
From this figure it is clear that for our systemN(t)/N0 is
very close to a power law with an exponent which for t
chosen values of the parameters is found to be approxima
equal to22.38. The corresponding static system is expec
to have an exponential decay law. In this case, no avera
in u0 is performed since the system is conservative. If
average inu0 for the static system we will also obtain
power law with an exponent equal to22 ~the derivation is
shown in the Appendix!. If, on the other hand, we exclud
from our calculations the ‘‘uncertain’’ trajectories@for which

y

FIG. 5. The logarithm of the fraction of uncertain poin
log10f (e) as a function of log10e for a51022 rad. The fit with a
straight line is also shown.
5-4
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uT̃(ũ0 ,f,a)2T̃(ũ01e,f,a)u is larger than a number of or
der 1# for the oscillating system we find a decay which f
large times follows approximately a power law with an e
ponent greater~in absolute value! than 2.38. It turns out tha
e'1026 is an optimal value allowing the almost comple
elimination of the peaks inT̃(ũ0) without deforming the
background. For this value ofe we find an exponent approxi
mately equal to25. The result is shown in Fig. 6. From th
above it becomes clear that although the presence of
oscillation accelerates the escape of the particles, the p
ence of the high peaks in theT̃(ũ0) function ~uncertain
points! introduces a delay of the particles and slows do
the escape. The origin of these peaks will be discussed in
following section.

IV. INTERPRETATION OF THE RESULTS:
A DIFFERENT DELAY MECHANISM

By analyzing the trajectories that stay for long times
the scattering region, we found that these do not exhib
large number of bounces. The observed delay comes f
orbits along which the scattered particle loses much of
energy and therefore traverses segments of its orbit wi
very low velocity. This sudden loss of energy can happen
any of the bounces provided thatiun2122V i i is small but
not as small as for the particle to bounce on the same
again. We have classified the peaks of theT̃(ũ0) plot accord-
ing to the bounce which leads to the major loss of ener
The result is shown in Fig. 7. Prominent peaks that are du
the first bounce are observed. We also observe that aro
each of the peaks there is a rich fractallike structure. In
following we are going to give a qualitative interpretation
the above observations by using a simple one-dimensi
model which neglects the curvature of the disks. This mo
can yield quantitative results only for the first and the seco

FIG. 6. The fractionN(t)/N0 of particles remaining in the scat
tering region at timet. The thick solid curve includes all the trajec
tories and the thin solid curve includes only the ‘‘certain’’ traject
ries ~see Sec. III B!. For larget both curves approximately obe
power laws with different exponents. The dashed lines show
corresponding linear fits. The plots were created by iteratingN0

5107 initial conditions.
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bounce, since with the parameters chosen, the scattered
ticle senses strongly the curvature of the disks after the
ond bounce.

Setting a50 the dynamics is limited to one spatial d
mension. In this case the system resembles to the Ferm
celeration model@19,20#. For notational convenience w
switch to the variablesv, un , tn @see Eq.~9!#. The particle
starts at the origin with initial velocityu(0)5(u0,0). In or-
der to find the timetc when the first collision with the right
disk occurs, we have to solve the equation

u0t5
D

2
2R1A sin~vt !. ~11!

The timetc can be thought of as the abscissa of the first po
of intersection of the straight lineu0t with the sinusoidal
curveD/22R1A sin(vt) ~see Fig. 8!. From this figure it is
obvious thattc is a discontinuous function ofu0. Disconti-
nuities occur for the values ofu0 for which the line is tangent
to the sinusoidal curve. If we denote astc

1 the value oftc

after the discontinuity, the value ofu05u0* at which the
discontinuity occurs is given by

u0* 5Av cos~vtc
1!. ~12!

Therefore the velocity of the particle after the first collisio
u1 is also discontinuous as a function ofu0. At this point we
should stress that the oscillation law need not only be h
monic for these discontinuities to occur. In Fig. 9~a! a plot of
u1 as a function ofu0 is shown. We observe sharp peaks th
get denser asu0→0. For u0→0, the initial velocity that
corresponds to a giventc is given by

u0>

D

2
2R2A

tc
. ~13!

Therefore the distance between two successive peaks o
u0 axis is given by

e

FIG. 7. Some of the major peaks of Fig. 2~a! are classified
according to the bounce that leads to the major energy loss of
scattered particle. The symbolsn, h, ands denote the first, the
second, and the third bounce, respectively.
5-5
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P. K. PAPACHRISTOUet al. PHYSICAL REVIEW E 64 016205
Du0>

D

2
2R2A

tc
2 Dtc , ~14!

whereDtc>2p/v. Combining the above two relations, w
conclude thatDu0;u0

2 as u0→0. The density of the peak
therefore increases as 1/u0

2 asu0→0.
We observe thatu1 gets close to 0 near the discontinuiti

(u0>2V, whereV is the velocity of the disk involved in the
collision!. If the velocity after the collision is small, but no
small enough as for the particle to rebounce on the sa
disk, there is a delay of the particle between the first and
second bounce. We expect this delay to be present in
original system (aÞ0) and to manifest itself as a peak in th
T̃(ũ0) plot, since for smalla the curvature of the disks ca
be neglected for the first collision.

In the following we will give a qualitative interpretatio
of the fact that there is a rich fractallike structure around
peaks ofT̃(ũ0) for the original system. The quantityu1/unu is
a measure of how much time is spent between thenth and
(n11)th collision for the one-dimensional system. In F
9~b! a plot of u1/u1u as a function ofu0 for the one-
dimensional system is shown. We observe that the peak
this plot are very close to the peaks of theT̃(ũ0) plot ~Fig. 2!
that correspond to the delay of the particle between the
and the second bounce. TheT̃(ũ0) plot can be thought of as
several iterations ofu1/ũnu plots which are expected to have
structure similar to theu1/ũ1u plot. Forũ0 that corresponds to
a peak of theT̃(ũ0) plot, ũ1 falls in the low velocity region,
where the structure of theu1/ũ1u plot is very dense. We there
fore expect fingerprints of this dense structure to be appa
around anyũ0 value which maps onto the low velocity re

FIG. 8. The abscissa of the point of intersection of the si
soidal curveD/22R1sinvt and the straight lineu0t is the timetc

when the first bounce occurs for the one-dimensional systema
50). The slope of the straight line isu0. For values ofu0 for which
the straight line is tangent to the sinusoidal curve,tc is discontinu-
ous as a function ofu0. The value oftc after the discontinuity is
denoted astc

1 .
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gion after some bounce. Since there is a lower bound on
velocity with which the particle can leave a disk, we do n
expect the structure around the peaks to be infinitely de
This is consistent with our observation that the fractal str
ture of T̃(ũ0) breaks at some smallũ0 scale. The higher a
peak of theT̃(ũ0) plot is, the smaller the velocity of the
particle along the orbit and the lower the breaking scale. T
above mechanism also explains the presence of peaks in
scattering functions of Ref.@14#, however, the structure ther
is more dense due to the different choice of the paramet
Furthermore, the mechanism is also present when the o
lating hard disks are replaced by two oscillating poten
hills. A detailed analysis of the dynamics of such a system
left for a future study.

V. CONCLUSIONS AND OUTLOOK

In the present paper we have studied the effects of t
dependence on the scattering process of a point particle
two harmonically oscillating hard disks. A different mech

-

FIG. 9. ~a! The velocityu1 after the first bounce as a function o
the initial velocity u0 for the one-dimensional system (a50). ~b!
u1/u1u as a function ofu0 for the one-dimensional system. Th
locations of the singularities are very close to the locations of
peaks of Fig. 7 that correspond to a loss of energy of the scatt
particle at the first bounce.
5-6
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NONPERIODIC DELAY MECHANISM AND FRACTALLIKE . . . PHYSICAL REVIEW E 64 016205
nism leading to long-lived scattering trajectories has b
found. It is associated with the energy loss of the scatte
particle at the collisions. This mechanism is not direc
related to the periodic orbits of the system and induce
fractallike structure in the scattering functions. At the sta
tical level, the mechanism manifests itself as a change in
properties of the fractionN(t)/N0 of particles that remain in
the scattering region after timet. Although this function still
obeys a power law, the absolute value of the correspond
exponent is modified by a significant amount. An interest
question that will be studied in the future is how time depe
dence affects the dynamics of a system whose static cou
part is chaotic, such as the three disk system@6#. As an
extension to this work, the transport properties of a latt
gas consisting of oscillating disks will be studied. Anoth
open question is the quantum manifestation of this mec
nism.
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APPENDIX

In this appendix we present the calculation of theN(t)/N0
function in the case of the scattering off two static disk
Including in the phase space integration the momentum
the projectile we obtain

N~ t !

N0
5

1

AE d2xE d2pQS l ~x!

p/m
2t D , ~A1!

wherel (x) is the distance traveled by the projectile starti
its trajectory atx with momentump, Q is the theta function,
andC is a normalization constant given by

C5E E d2xd2p. ~A2!

Using polar coordinates, the integral over momentum can
performed as follows:

N~ t !

N0
5

2p

A E d2xE
0

ml(x)/t

pdp5
pm2

At2
E d2xl2~x!

~A3!

leading toN(t)/N0;t22.
.
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